Nitric oxide synthase inhibition does not affect the exercise-induced arterial hypoxemia in Thoroughbred horses.
نویسندگان
چکیده
Because sensitivity of equine pulmonary vasculature to endogenous as well as exogenous nitric oxide (NO) has been demonstrated, we examined whether endogenous NO production plays a role in exercise-induced arterial hypoxemia. We hypothesized that inhibition of NO synthase may alter the distribution of ventilation-perfusion mismatching, which may affect the exercise-induced arterial hypoxemia. Arterial blood-gas variables were examined in seven healthy, sound Thoroughbred horses at rest and during incremental exercise protocol leading to galloping at maximal heart rate without (control; placebo = saline) and with N(omega)-nitro-L-arginine methyl ester (L-NAME) administration (20 mg/kg iv). The experiments were carried out in random order, 7 days apart. At rest, L-NAME administration caused systemic hypertension, pulmonary hypertension, and bradycardia. During 120 s of galloping at maximal heart rate, significant arterial hypoxemia, desaturation of hemoglobin, hypercapnia, hyperthermia, and acidosis occurred in the control as well as in NO synthase inhibition experiments. However, statistically significant differences between the treatments were not found. In both treatments, exercise caused a significant rise in hemoglobin concentration, but the increment was significantly attenuated in the NO synthase inhibition experiments, and, therefore, arterial O(2) content (Ca(O(2))) increased to significantly lower values. These data suggest that, whereas L-NAME administration does not affect pulmonary gas exchange in exercising horses, it may affect splenic contraction, which via an attenuation of the rise in hemoglobin concentration and Ca(O(2)) may limit performance at higher workloads.
منابع مشابه
L-NAME does not affect exercise-induced pulmonary hypertension in thoroughbred horses.
The present study was carried out to examine the effects of nitric oxide synthase inhibition with Nomega-nitro-L-arginine methyl ester (L-NAME) on the right atrial as well as on the pulmonary arterial, capillary, and venous blood pressures of horses during rest and exercise performed at maximal heart rate (HRmax). Experiments were carried out on seven healthy, sound, exercise-trained Thoroughbr...
متن کاملNaHCO(3) does not affect arterial O(2) tension but attenuates desaturation of hemoglobin in maximally exercising Thoroughbreds.
The objective of the present study was to examine the effects of preexercise NaHCO(3) administration to induce metabolic alkalosis on the arterial oxygenation in racehorses performing maximal exercise. Two sets of experiments, intravenous physiological saline and NaHCO(3) (250 mg/kg i.v.), were carried out on 13 healthy, sound Thoroughbred horses in random order, 7 days apart. Blood-gas variabl...
متن کاملIntrapulmonary arteriovenous shunts of 15 m in diameter probably do not contribute to arterial hypoxemia in maximally exercising Thoroughbred horses
Manohar, Murli, and Thomas E. Goetz. Intrapulmonary arteriovenous shunts of 15 m in diameter probably do not contribute to arterial hypoxemia in maximally exercising Thoroughbred horses. J Appl Physiol 99: 224–229, 2005. First published March 17, 2005; doi:10.1152/japplphysiol.01230.2004.—The present study examined whether Thoroughbred horses performing strenuous exercise exhibit intrapulmonary...
متن کاملNasal strips do not affect pulmonary gas exchange, anaerobic metabolism, or EIPH in exercising Thoroughbreds.
The present study was carried out to examine whether nasal strip application would improve the exercise-induced arterial hypoxemia and hypercapnia, diminish anaerobic metabolism, and modify the incidence of exercise-induced pulmonary hemorrhage (EIPH) in horses. Two sets of experiments, control and nasal strip experiments, were carried out on seven healthy, sound, exercise-trained Thoroughbred ...
متن کاملH1-receptor antagonist, tripelennamine, does not affect arterial hypoxemia in exercising Thoroughbreds.
It has been suggested that pulmonary injury and inflammation-induced histamine release from airway mast cells may contribute to exercise-induced arterial hypoxemia (EIAH). Because stress failure of pulmonary capillaries and EIAH are routinely observed in exercising horses, we examined whether preexercise administration of an H1-receptor antagonist may mitigate EIAH. Two sets of experiments, pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2001